Web3D 2015

Castle Game Engine
Tutorial

Michalis Kamburelis
michalis.kambi@gmail.com

Heraklion, Crete, Greece 18 - 21 June 2015

Outline
@ Basics

@ Introduction
@ Let’'s Run Some Stuff
@ 5-minute Programming Crash Course

@ Creating Games
@ First 3D Application
@ Creating FPS 3D Game
@ Creating 2D Game

e More!

@ Conclusion
@ Android
@ Questions?

Basics

Outline
@ Basics

Outline
@ Basics

@ Introduction

Basics
[e] lelelelelele]e)

Castle Game Engine

@ Game engine: combine 3D and 2D
assets together.

@ Scene graph is X3D.

@ Open-source, modern Object Pascal
language.

Basics
[e]e] lelelelelele)

Rendering

Fast and modern:
@ Shading: Gouraud or Phong or
custom,
@ Bump mapping,
@ Mirrors (cubemaps and more),
@ Shadows,
@ Screen effects (programmable)...

High-level API for levels, creatures
(ready Al), items..

This Will Be Fun

We will create a simple FPS 3D game and another 2D game
using our engine.

If you have a laptop, follow us and create your own games right
now too!
Download:

@ Lazarus http://www.lazarus—ide.org/

@ Castle Game Engine http:
//castle—engine.sourceforge.net/engine.php

@ Example data https:
//github.com/michaliskambi/cge-tutorial

http://www.lazarus-ide.org/
http://castle-engine.sourceforge.net/engine.php
http://castle-engine.sourceforge.net/engine.php
https://github.com/michaliskambi/cge-tutorial
https://github.com/michaliskambi/cge-tutorial

Basics
[e]e]e]ele] lelele)

Game Data

@ We support of lot of 3D and 2D formats, in particular VRML
/ X3D.

@ Use any authoring tool you like to export to X3D.

@ Actually, you can export to other formats. We support a
subset of Collada and various other formats. But X3D is
the best:)

@ We have extensive support for Spine JSON format for 2D.

Basics
000000800

Engine API

@ Access to the X3D nodes graph of your scenes.

@ If you know X3D, you can immediately do a lot of stuff by
processing the X3D nodes graph.

@ Engine is portable. We will develop on desktop and show
at the end that it works on Android too. iOS (iPhone, iPad)
is possible too!

@ Comfortable API for higher-level stuff. While you can just
instantiate and move 3D and 2D scenes, you also have
ready classes specialized for 3D level, enemies and so on.

Basics
000000080

Engine Docs

@ Main site http:
//castle—-engine.sourceforge.net/engine.php

@ Tutorial http://castle—-engine.sourceforge.net/
tutorial_intro.php

@ Reference http://castle-engine.sourceforge.
net/apidoc/html/index.html

http://castle-engine.sourceforge.net/engine.php
http://castle-engine.sourceforge.net/engine.php
http://castle-engine.sourceforge.net/tutorial_intro.php
http://castle-engine.sourceforge.net/tutorial_intro.php
http://castle-engine.sourceforge.net/apidoc/html/index.html
http://castle-engine.sourceforge.net/apidoc/html/index.html

Basics
00000000e

Lazarus

Lazarus http://www.lazarus—ide.org/ is an integrated
development environment, with editor, debugger and compiler
(FPC) inside.

Our engine is a package for Lazarus — you install it inside
Lazarus and use from there.

http://www.lazarus-ide.org/

Outline
@ Basics

@ Let's Run Some Stuff

Basics

000000

Lazarus First Peek

Lazarus IDE V1,3 - projectl

Fle Edt Search Vew Smurce Srosct Aun Package Toos Wincow He
5 9vE© T [stendard | Addtonsl| Gommon Gontrols | Dalogs | Data Contrls | Data Access. System | Misc
BE b I8 ae e

B 7 e e

axControls

OpenL symcar
& B

Source Editor [

Forml
Object inspector =
Components

= Form1 Thorm1

Forms, Controls, Graphics, Dialogs:

Properies s Faunrtes Restricea

atione

255
aktop akLeR]

Forml: TForn.

oalerToRicE

[fnptenentation
iSystemiens bViirize bisximize]
1
(TConroichidsiang
[everait
i

£ Ol n o veanea

NS il pas

Messages

Basics
[o]e] lele]e]

Engine First Peek

@ Get engine from http:
//castle—engine.sourceforge.net/engine.php

@ Install package castle_components in Lazarus.

@ Compile and run
examples/lazarus/model_3d_viewer/

http://castle-engine.sourceforge.net/engine.php
http://castle-engine.sourceforge.net/engine.php

Basics

[e]e]e] lole}

Running model_3d_viewer example

=
Eile View Help

e A e L

Camerave

Positon: [125] [000] [4.17 @ screenshot
Orecton oo] oo)

Nevigation ype

(leemne Ava][Fy None

S Eogine 42

Basics
0000e0

view3dscene

Full-featured 3D browser using our engine. Very useful to
quickly test your 3D models before loading them to your game.

Get from http://castle-engine.sourceforge.net/
view3dscene.php

http://castle-engine.sourceforge.net/view3dscene.php
http://castle-engine.sourceforge.net/view3dscene.php

Basics

O0000e

view3dscene Lights Editor

F3

Screenshot

PointLight
Edit 1: PointLight

Edit 2: PointLight

Edit 3: PointLight

Edit 4: PointLight

Global Ambient Light Red]
[Global Ambient Light Green Il BN T—
Global Ambient Light Blue i e —
Edit Headlight

Close Lights Editor

Camera: pos (-1.55, 8.3, 9.97), dir (0.37, -0.83, -0.42), up (0.17, -0.38, 0.91)
Rendered Shapes : 11 of 16
World time: Load time + 21 = 1434424977

Outline
@ Basics

@ 5-minute Programming Crash Course

Basics
(o] lelelele}

Programming Crash Course

Very quick overview of the Object Pascal language.

@ Probably more similar to C++ or Java than to the Pascal
you learned 30 years ago:)

@ Modern hybrid programming language, with everything you
expect — units, classes and interfaces system, generics,
rich runtime library, tools etc.

@ Compiled to native, optimized code.

Example Program

program Examplei;

procedure Foo(const Parameter: string);
begin
if Parameter <> then
Writeln (Parameter + ° says hello!’) else
Writeln ('Parameter is an empty string.’);
end;

()

begin
Foo(’aa’);
end.

Basics

000000 0000

Example Program With Class |

uses SysUtils;
type
TMyClass = class
public
Field: string;
procedure MyMethod;
end;
procedure TMyClass.MyMethod;
begin
if Field <> '’ then
Writeln(Field + ° says hello!’) else
Writeln('Field is an empty string.’);
end;

Example Program With Class I

var
My: TMyClass;

begin
My := TMyClass. Create;
try

My. Field := ’'blah’;
My.MyMethod; { or My.MyMethod (); }
finally FreeAndNil (My) end;
end.

[e]e]ele] o]

Example Unit

{ exampleunit.pas }
unit ExampleUnit;

interface
procedure Foo(const Parameter: string);
implementation

procedure Foo(const Parameter: string);
begin
if Parameter <> '’ then
Writeln (Parameter + ' says hello!’) else
Writeln ('Parameter is an empty string.’);
end;

Basics

[e]e]elele]]

Example Program Using Unit

{ example3. Ipr }
program Example3;

uses ExampleUnit;
begin

Foo(’aa’); { or ExampleUnit.Foo(’aa’); }
end.

Creating Games

Outline

@ Creating Games

Creating Games
[Jelele]e]

Outline

@ Creating Games
@ First 3D Application

Creating Games
(o] lele]e]

Get Our Samples

Download from GitHub:
https://github.com/michaliskambi/cge—tutorial

If you're not sure how, just get the ZIP file and extract it:
https://github.com/michaliskambi/cge-tutorial/
archive/master.zip

https://github.com/michaliskambi/cge-tutorial
https://github.com/michaliskambi/cge-tutorial/archive/master.zip
https://github.com/michaliskambi/cge-tutorial/archive/master.zip

Creating Games
[e]e] Tele]

Our First Program

Let’s try out Lazarus.

@ Create new project using "File -> New", choose
"Application”.

@ Drop button a form.

@ Add OnClick handler with this implementation:

ShowMessage ('Hooray ! ");

Creating Games
[ee]e] o]

Data

@ Get some 3D model.

@ You can use our example data from
https://github.com/michaliskambi/
cge-tutorial/archive/master.zip. Copy the data
from first_3d_application directory.

@ Test your scene 3D by opening it using view3dscene —
http://castle—-engine.sourceforge.net/
view3dscene.php

https://github.com/michaliskambi/cge-tutorial/archive/master.zip
https://github.com/michaliskambi/cge-tutorial/archive/master.zip
http://castle-engine.sourceforge.net/view3dscene.php
http://castle-engine.sourceforge.net/view3dscene.php

Creating Games

YO00000000

Code

Pick TcastleControl from the component palette (tab
Castle) and drop it on a regular Lazarus form.

uses CastleFilesUtils , CastleScene;

{ handle form OnCreate event }
procedure TForm1.FormCreate (Sender: TObject);

var
Scene: TCastleScene;

begin
Scene := TCastleScene.Create(Application);

Scene.Load (ApplicationData ('medkit.x3d"));

CastleControl1.SceneManager. Items .Add(Scene);
CastleControl1.SceneManager. MainScene:=Scene;
end;

Creating Games
9000000000 00000000

Outline

@ Creating Games

@ Creating FPS 3D Game

Creating Games

000000000000

Level

Multiple 3D objects can be loaded like on the last slide.

They can be composed together to form a typical game world,
with level, creatures, and so on.

Specifically for game levels the engine includes also a special
utilities. We will use it now.

Games

0000000000

Level: 3D Data

Create a 3D model for your level.

@ From our example data
https://github.com/michaliskambi/
cge—tutorial/archive/master.zip copy the data
from fps_game subdirectory.

@ Test your level by opening it in view3dscene.

@ Note that we use X3D Inline mechanism there:
bridge.x3d is exported from Blender,
bridge_final.x3dv is written by hand and inlines
bridge.x3d.

https://github.com/michaliskambi/cge-tutorial/archive/master.zip
https://github.com/michaliskambi/cge-tutorial/archive/master.zip

OQQOOOOOOO

Level: XML Data

Create XML file describing your level.

<?xml version="1.0"?>

<level
name="Dbridge"
type="Level"

scene="bridge_final.x3dv"
title="Bridge"
placeholders="blender"

/>

Level: Code

Drop TCastleControl on Lazarus form.

uses CastlelLevels;

{ handle CastleControl1 event OnOpen }

procedure TForm1.CastleControl1Open (
Sender: TObject);

begin
Levels.LoadFromFiles;
CastleControl1.SceneManager. LoadLevel(

"bridge ’);
end;

Creating Games

000000000000

ltems on Level: XML

To create a pickable item that is visible on 3D level, create
resource.xml describing the item.

<?xml version="1.0"?>

<resource
name="MedKit"
type="1Item"

caption="Medic Kit"
image="inventory_image .png">
<model>
<base url="medkit.x3d"/>
</model>
</resource>

OQQOOOOOOO

ltems on Level: Code

Let the engine see resource.xml file describing the item
named MedKit.

{ add to the implementation uses clause }
uses ..., CastleResources;

{ add at the beginning of CastleControl1Open }
Resources.LoadFromFiles;

ltems on Level: Placeholders

You can now place in Blender special objects named
CasMedKit

@ On level load, they will be recognized and replaced with
medkit 3D object.

@ Item can be picked, by default will be just placed in player
inventory.

@ You can use placeholders for your own stuff as well.

@ Placeholder detection can be adjusted for given needs or
3D authoring software.

Creating Games

O0000000e000000000

Placeholders in Blender

e e e e e

Creating Games

Player

There is no player yet (only a default camera, that does not
have inventory or other game features).

{ add to implementation uses clause }
uses ..., ,CastlePlayer;

{ declare in class private section }
Player: TPlayer;

{ add at the beginning of CastleControl1Open }
Player := TPlayer.Create (
CastleControl1.SceneManager);
CastleControl1.SceneManager. Iltems.Add(Player);
CastleControl1.SceneManager. Player := Player;

HUD |

Items are pickable now, they are added to player’s inventory.
But the inventory is not visualized in any way. Add a simple 2D
HUD:

{ add to implementation uses cl/ause }
uses ..., , CastleUIControls;

{ add to implementation }

type
TGame2DControls = class(TUIControl)
public
procedure Render; override;
end;

procedure TGame2DControls.Render;

Creating Games

HUD Il

var
Player: TPlayer;
I, J, X: Integer;

begin
Player := Formi1.Player;
X = 0;
for [:=0 to Player.Inventory.Count—1 do
for J:=0 to Player.Inventory[Il]. Quantity—1 do
begin
Player.Inventory[|]. Resource.GLImage.
Draw (X, 0);
X += 100;
end;

end;

Creating Games

HUD Il

{ add to CastleControl10Open }

var
Game2DControls: TGame2DControls;

begin

Game2DControls := TGame2DControls. Create (
Application);
CastleControl1.Controls.InsertFront(
Game2DControls) ;
end;

Creating Games

[e] 000008000000

Creatures

Adding a creature with a predefined Al does not require any
code at all.

@ We already load resources (items and creatures) by
Resources.LoadFromFiles.
This detects knight_creature/resource.xml file
inside as resource named Knight using a standard Al
called walkAttack.

@ We already load the level using LoadLevel facility.
This allows to place initial creatures on level by placing
CasResKnight from Blender.

Spawn Creatures |

Add a button on a form to spawn creatures. Best to use
TSpeedButton, to not capture focus.

{ add to implementation uses clause }
uses ..., CastleVectors, CastleCreatures;

{ handle button OnClick event }
procedure TForm1.Button1Click (Sender: TObject);
var
P: TVector3Single;
Direction: TVector3Single;
CreatureResource: TCreatureResource;
begin
P := Player.Position + Player.Direction x 10;
Direction := Player.Direction;

Q0.00000

Spawn Creatures |l

CreatureResource :=
Resources . FindName (*Knight *)
as TCreatureResource;
CreatureResource. CreateCreature (
CastleControl1 . SceneManager. Iltems ,
P, Direction);
end;

Creating Games

Kill Creatures |

Add a button to kill creature.

{ add to implementation uses cl/ause }
uses ., Castle3D;

{ handle kill button OnClick event }
procedure TForm1.SpeedButton2Click (
Sender: TObject);

var

| : Integer;

Hit: TRayCollision;
begin

Hit := Player.Ray(Player.Middle,
Player.Direction);

Creating Games

Kill Creatures Il

if Hit <> nil then
begin
for | := 0 to Hit.Count — 1 do
if Hit[I].Item is T3DAlive then
begin
(Hit[1].Item as T3DAlive). Hurt(
100, Player.Direction, 1, Player);
Break;
end;
FreeAndNil (Hit);
end;
end;

Creating Games

000000008000

Shadows

Since all our 3D data is in X3D, we can do a lot of fun stuff with
X3D coding. Use Castle Game Engine X3D extensions to get
shadows, screen effects, shader effects, mirrors, and more.

@ For a simplest demo, enable shadows by ,.shadows TRUE”
on a light source.

@ In our sample data from
https://github.com/michaliskambi/
cge—tutorial/archive/master.zip just uncomment
relevant lines at the end of bridge_final.x3dv.

https://github.com/michaliskambi/cge-tutorial/archive/master.zip
https://github.com/michaliskambi/cge-tutorial/archive/master.zip

Creating Games

0000000000000 00e00

Our Game With Shadows

Lazarus i0E LS = meidatarisge.ienal
w5

Creating Games

Find X3D Node |

We can trivially access X3D node and change it’s property from
Object Pascal. Notice the DEF sun in X3D file.

{ add to interface uses clause }
uses ..., X3DNodes;

{ declare in class private section }
Root: TX3DRootNode;
Sun: TSpotLightNode;

{ add to CastleControl1Open }

Root := CastleControl1.SceneManager.
MainScene . RootNode ;

Sun := Root.FindNodeByName (TSpotLightNode ,
'Sun’, true) as TSpotLightNode;

Creating Games

We have a reference to our sun X3D node, we can modify it's
fields.

{ handle CastleControl1 event OnUpdate }
procedure TForm1.CastleControl1Update (
Sender: TObject);

var

V: TVector3Single;
begin

V := Sun.Location;

V[2] := Sin(CastleControl1.SceneManager.
MainScene . Time. Seconds) x« 10;
Sun. Location := V;
end;

Creating Games
@®0000000000

Outline

@ Creating Games

@ Creating 2D Game

Data

Example data on https://github.com/michaliskambi/
cge-tutorial/archive/master.zip, cOpy data from
2d_game subdirectory.

Open with view3dcene background. x3dv and
dragon/dragon. json. Look at background. x3dv with a
text editor, it's really trivial X3D file.

Dragon was modelled in Spine, and exported to JSON. Our
engine can read it (it's converted to X3D graph of course).

https://github.com/michaliskambi/cge-tutorial/archive/master.zip
https://github.com/michaliskambi/cge-tutorial/archive/master.zip

Creating Games

00e00000000

Spine Peek

Creating Games

00 000000000
[e]e]e] lelelelelele]e)

Code |

Drop TCastle2DControl on a form.

{ add to interface uses clause }
uses ..., CastleFilesUtils ,Castle2DSceneManager;

{ declare as form private field }
Background: T2DScene;

{ handle form OnCreate }
procedure TForm1.FormCreate (Sender: TObject);
var
SM: T2DSceneManager;
begin
Background := T2DScene.Create (Application);
Background . Load (

Creating Games

000@0000000

Code |l

ApplicationData ('background.x3dv’));

SM := Castle2DControl1.SceneManager;
SM. Items . Add (Background) ;
SM. MainScene := Background;
SM. ProjectionAutoSize := false;
SM. ProjectionHeight := 721;
end;

Creating Games

00) 00000000
[e]e]e]e] elelelele]e)

Dragon

Load a dragon and add it to the world. Start £1ying animation
immediately.

{ declare as form private field }
Dragon: T2DScene;

{ add to FormCreate }
Dragon := T2DScene.Create (Application);
Dragon.Load(

ApplicationData ('dragon/dragon.json’));
Dragon.ProcessEvents := true;
Dragon.PlayAnimation (' flying ', paForcelLooping);
Castle2DControl1.SceneManager. Items .Add(Dragon);

Creating Games
[ele]elele] lelelelele]

Sidenote: Screen Size

We don’t worry about form size or screen size, because
everything adjusts to the form size automatically.

We had to set the projection size, which says what portion of
game world is visible through the viewport. We don’t worry how
many pixels has the viewport.

It would be more useful to have some control over dragon
position and scale. We could wrap it in X3D Transform node.
Or use T3DTransform that does something similar, but is
more comfortable in this case.

{ add to interface uses clause }
uses ..., Castle3D, CastleVectors;

{ declare as private field in TForm1 }
DragonTransform: T3DTransform;

{ add to FormCreate }

DragonTransform :=
T3DTransform. Create (Application);

DragonTransform.Scale :=

Creating [CETE

OOOOOOQOOOO

Scallng The Dragon |l

Vector3Single (0.2, 0.2, 0.2);
Castle2DControl1 . SceneManager. [tems . Add(
DragonTransform);
{ ... here create Dragon, like previously,
but add it to DragonTransform: }
DragonTransform.Add(Dragon);

Capturing Mouse |

Let’s capture mouse clicks to know where user wants to move
the dragon.

{ declare as private field in TForm1 }
FlyingTarget: TVector2Single;

{ in FormCreate add }

Background. Spatial := [ssRendering,
ssDynamicCollisions];
Background. ProcessEvents := true;

{ handle assign Castle2DControl1 event OnPress}
procedure TForm1.Castle2DControl1Press (

Sender: TObject;

const Event: TInputPressRelease);

begin
if Event.lsMouseButton(mbLeft) and
(Background.
PointingDeviceOverltem <> nil) then
FlyingTarget := Vector2Single (
Background. PointingDeviceOverPoint[0],
Background. PointingDeviceOverPoint[1]);

end;

Note: this was one point where we have to remember that
viewport presents the world, and world coordinates (in
Background.PointingDeviceOverPoint) are not simple mouse
position (in Event.Position).

Creating [CETE

OOOOOOO0.00

Sidenote: How To Log

We coded the last part blind. Would be nice to see what is
going on, whether F1lyingTarget gets any sensible values.

Show message in Lazarus:

ShowMessage('my string '’);

ShowMessage('my vector is ' +
VectorToNiceStr(MyVector));

ShowMessage (Format('my int %d, my float %f’
[Mylnt, MyFloat]));

b

Creating Games

00) 00000000
00000000080

Moving The Dragon Immediately

Using DragonTransform we can easily move the whole
dragon 3D object.

procedure TForm1.Castle2DControl1Update (
Sender: TObject);

var
T: TVector3Single;
begin
T := DragonTransform. Translation;

T[0] := FlyingTarget[0];

T[1] := FlyingTarget[1];

DragonTransform. Translation := T;
end;

Creating Games

00) 00000000
0000000000

Moving The Dragon With Speed |

Many ways to do it.

function MoveTo(const Start, Target: Single):
Single ;
var
MoveDist: Single;
begin
MoveDist := 500 =x
Castle2DControl1 .Fps.UpdateSecondsPassed;
if Start < Target then
Result := Min(Target, Start + MoveDist) else
Result := Max(Target, Start — MoveDist);
end;

Creating Games

00) 00000000
0000000000

Moving The Dragon With Speed Il

var
T: TVector3Single;

begin
T := DragonTransform. Translation;

T[O0] := MoveTo(T[0], FlyingTarget[0]);
T[1] := MoveTo(T[1], FlyingTarget[1]);
DragonTransform. Translation := T;
{ see example code for additional
trick to horizontally mirror dragon }
end;

More!

Outline

e More!

More!
[o)

Outline

e More!

@ Conclusion

What We Know Now

This was just a start of a 3D, and then a short start of a 2D
game, but I'm sure you get the idea how to continue.
You have all the necessary tools now.

@ You can manage levels, player, items, inventory, creatures
on a 3D world.

@ You can directly create and destroy and move whole 2D
and 3D objects (TCastleScene, T2DScene).

@ You can modify the scene’s X3D graph.

More!
[eJele]e]

Outline

e More!

@ Android

More!
(o] lele]e]

Our Game On Android

Android

@ Need to use TCastleWindow engine component, not
TCastleControl. Like TCastleControl but engine
fills 100

@ The engine supports custom 3D viewports and 2D
controls. So your game area is still fully configurable. You
just have to draw 100

@ Itis easy to create game code that compiles and works on
both desktop (Windows, Linux, Mac OS X...) and Android.

@ See example code of 2d_game_android_and_desktop.

Build tool

The engine includes a build tool, that compiles a
production-ready Android apk (something you can install or
upload to Google Play). You only provide a Pascal source code,
and CastleEngineManifest.xml declaring basic application
parameters.

See example CastleEngineManifest .xml.

Integration with Android Libraries

The engine code can easily interact with Java on Android.
Some Android APIs with which we already successfully
integrated:

@ Google Play Game Services,

@ In-app payments,

@ Ads,

@ Google Analytics,

@ Game Analytics.
For some cool games done using Castle Game Engine,
published on Google Play, visit

https://play.google.com/store/apps/developer?
id=Michalis+Kamburelis

https://play.google.com/store/apps/developer?id=Michalis+Kamburelis
https://play.google.com/store/apps/developer?id=Michalis+Kamburelis

Outline

e More!

@ Questions?

Visit us:
http://castle-engine.sourceforge.net/

Thank you for your attention!

Questions?

	Basics
	Introduction
	Let's Run Some Stuff
	5-minute Programming Crash Course

	Creating Games
	First 3D Application
	Creating FPS 3D Game
	Creating 2D Game

	More!
	Conclusion
	Android
	Questions?

