
Castle Game Engine
Tutorial

Michalis Kamburelis
michalis.kambi@gmail.com

Heraklion, Crete, Greece 18 - 21 June 2015

Basics Creating Games More!

Outline
1 Basics

Introduction
Let’s Run Some Stuff
5-minute Programming Crash Course

2 Creating Games
First 3D Application
Creating FPS 3D Game
Creating 2D Game

3 More!
Conclusion
Android
Questions?

Basics Creating Games More!

Outline
1 Basics

Introduction
Let’s Run Some Stuff
5-minute Programming Crash Course

2 Creating Games
First 3D Application
Creating FPS 3D Game
Creating 2D Game

3 More!
Conclusion
Android
Questions?

Basics Creating Games More!

Outline
1 Basics

Introduction
Let’s Run Some Stuff
5-minute Programming Crash Course

2 Creating Games
First 3D Application
Creating FPS 3D Game
Creating 2D Game

3 More!
Conclusion
Android
Questions?

Basics Creating Games More!

Castle Game Engine

Game engine: combine 3D and 2D
assets together.
Scene graph is X3D.
Open-source, modern Object Pascal
language.

Basics Creating Games More!

Rendering

Fast and modern:

Shading: Gouraud or Phong or
custom,
Bump mapping,
Mirrors (cubemaps and more),
Shadows,
Screen effects (programmable)...

Basics Creating Games More!

High-level API for levels, creatures
(ready AI), items..

Basics Creating Games More!

This Will Be Fun

We will create a simple FPS 3D game and another 2D game
using our engine.

If you have a laptop, follow us and create your own games right
now too!
Download:

Lazarus http://www.lazarus-ide.org/
Castle Game Engine http:
//castle-engine.sourceforge.net/engine.php

Example data https:
//github.com/michaliskambi/cge-tutorial

http://www.lazarus-ide.org/
http://castle-engine.sourceforge.net/engine.php
http://castle-engine.sourceforge.net/engine.php
https://github.com/michaliskambi/cge-tutorial
https://github.com/michaliskambi/cge-tutorial

Basics Creating Games More!

Game Data

We support of lot of 3D and 2D formats, in particular VRML
/ X3D.
Use any authoring tool you like to export to X3D.
Actually, you can export to other formats. We support a
subset of Collada and various other formats. But X3D is
the best:)
We have extensive support for Spine JSON format for 2D.

Basics Creating Games More!

Engine API

Access to the X3D nodes graph of your scenes.
If you know X3D, you can immediately do a lot of stuff by
processing the X3D nodes graph.
Engine is portable. We will develop on desktop and show
at the end that it works on Android too. iOS (iPhone, iPad)
is possible too!
Comfortable API for higher-level stuff. While you can just
instantiate and move 3D and 2D scenes, you also have
ready classes specialized for 3D level, enemies and so on.

Basics Creating Games More!

Engine Docs

Main site http:
//castle-engine.sourceforge.net/engine.php

Tutorial http://castle-engine.sourceforge.net/
tutorial_intro.php

Reference http://castle-engine.sourceforge.
net/apidoc/html/index.html

http://castle-engine.sourceforge.net/engine.php
http://castle-engine.sourceforge.net/engine.php
http://castle-engine.sourceforge.net/tutorial_intro.php
http://castle-engine.sourceforge.net/tutorial_intro.php
http://castle-engine.sourceforge.net/apidoc/html/index.html
http://castle-engine.sourceforge.net/apidoc/html/index.html

Basics Creating Games More!

Lazarus

Lazarus http://www.lazarus-ide.org/ is an integrated
development environment, with editor, debugger and compiler
(FPC) inside.

Our engine is a package for Lazarus — you install it inside
Lazarus and use from there.

http://www.lazarus-ide.org/

Basics Creating Games More!

Outline
1 Basics

Introduction
Let’s Run Some Stuff
5-minute Programming Crash Course

2 Creating Games
First 3D Application
Creating FPS 3D Game
Creating 2D Game

3 More!
Conclusion
Android
Questions?

Basics Creating Games More!

Lazarus First Peek

Basics Creating Games More!

Engine First Peek

Get engine from http:
//castle-engine.sourceforge.net/engine.php

Install package castle_components in Lazarus.
Compile and run
examples/lazarus/model_3d_viewer/

http://castle-engine.sourceforge.net/engine.php
http://castle-engine.sourceforge.net/engine.php

Basics Creating Games More!

Running model_3d_viewer example

Basics Creating Games More!

view3dscene

Full-featured 3D browser using our engine. Very useful to
quickly test your 3D models before loading them to your game.

Get from http://castle-engine.sourceforge.net/
view3dscene.php

http://castle-engine.sourceforge.net/view3dscene.php
http://castle-engine.sourceforge.net/view3dscene.php

Basics Creating Games More!

view3dscene Lights Editor

Basics Creating Games More!

Outline
1 Basics

Introduction
Let’s Run Some Stuff
5-minute Programming Crash Course

2 Creating Games
First 3D Application
Creating FPS 3D Game
Creating 2D Game

3 More!
Conclusion
Android
Questions?

Basics Creating Games More!

Programming Crash Course

Very quick overview of the Object Pascal language.

Probably more similar to C++ or Java than to the Pascal
you learned 30 years ago:)
Modern hybrid programming language, with everything you
expect — units, classes and interfaces system, generics,
rich runtime library, tools etc.
Compiled to native, optimized code.

Basics Creating Games More!

Example Program

program Example1 ;

procedure Foo (const Parameter : str ing) ;
begin

i f Parameter <> ’ ’ then
Writeln (Parameter + ’ says h e l l o ! ’) else
Writeln (’ Parameter i s an empty str ing . ’) ;

end ;

begin
Foo (’ aa ’) ;

end .

Basics Creating Games More!

Example Program With Class I
uses SysUt i l s ;
type

TMyClass = class
public

F ie l d : str ing ;
procedure MyMethod ;

end ;
procedure TMyClass . MyMethod ;
begin

i f F ie l d <> ’ ’ then
Writeln (F i e l d + ’ says h e l l o ! ’) else
Writeln (’ F i e l d i s an empty str ing . ’) ;

end ;

Basics Creating Games More!

Example Program With Class II

var
My: TMyClass ;

begin
My := TMyClass . Create ;
t ry

My. F ie l d := ’ b lah ’ ;
My. MyMethod ; { or My. MyMethod () ; }

f i n a l l y FreeAndNil (My) end ;
end .

Basics Creating Games More!

Example Unit
{ example unit . pas }
unit ExampleUnit ;

in ter face

procedure Foo (const Parameter : str ing) ;

implementation

procedure Foo (const Parameter : str ing) ;
begin

i f Parameter <> ’ ’ then
Writeln (Parameter + ’ says h e l l o ! ’) else
Writeln (’ Parameter i s an empty str ing . ’) ;

end ;

end .

Basics Creating Games More!

Example Program Using Unit

{ example3 . l p r }
program Example3 ;

uses ExampleUnit ;

begin
Foo (’ aa ’) ; { or ExampleUnit . Foo (’ aa ’) ; }

end .

Basics Creating Games More!

Outline
1 Basics

Introduction
Let’s Run Some Stuff
5-minute Programming Crash Course

2 Creating Games
First 3D Application
Creating FPS 3D Game
Creating 2D Game

3 More!
Conclusion
Android
Questions?

Basics Creating Games More!

Outline
1 Basics

Introduction
Let’s Run Some Stuff
5-minute Programming Crash Course

2 Creating Games
First 3D Application
Creating FPS 3D Game
Creating 2D Game

3 More!
Conclusion
Android
Questions?

Basics Creating Games More!

Get Our Samples

Download from GitHub:
https://github.com/michaliskambi/cge-tutorial

If you’re not sure how, just get the ZIP file and extract it:
https://github.com/michaliskambi/cge-tutorial/
archive/master.zip

https://github.com/michaliskambi/cge-tutorial
https://github.com/michaliskambi/cge-tutorial/archive/master.zip
https://github.com/michaliskambi/cge-tutorial/archive/master.zip

Basics Creating Games More!

Our First Program

Let’s try out Lazarus.

Create new project using "File -> New", choose
"Application".
Drop button a form.
Add OnClick handler with this implementation:

ShowMessage (’ Hooray ! ’) ;

Basics Creating Games More!

Data

Get some 3D model.
You can use our example data from
https://github.com/michaliskambi/
cge-tutorial/archive/master.zip. Copy the data
from first_3d_application directory.
Test your scene 3D by opening it using view3dscene —
http://castle-engine.sourceforge.net/
view3dscene.php

https://github.com/michaliskambi/cge-tutorial/archive/master.zip
https://github.com/michaliskambi/cge-tutorial/archive/master.zip
http://castle-engine.sourceforge.net/view3dscene.php
http://castle-engine.sourceforge.net/view3dscene.php

Basics Creating Games More!

Code
Pick TCastleControl from the component palette (tab
Castle) and drop it on a regular Lazarus form.

uses C a s t l e F i l e s U t i l s , CastleScene ;

{ handle form OnCreate event }
procedure TForm1 . FormCreate (Sender : TObject) ;
var

Scene : TCastleScene ;
begin

Scene := TCastleScene . Create (A p p l i c a t i o n) ;
Scene . Load (App l i ca t ionData (’ medkit . x3d ’)) ;

Cast leCont ro l1 . SceneManager . I tems . Add (Scene) ;
Cast leCont ro l1 . SceneManager . MainScene := Scene ;

end ;

Basics Creating Games More!

Outline
1 Basics

Introduction
Let’s Run Some Stuff
5-minute Programming Crash Course

2 Creating Games
First 3D Application
Creating FPS 3D Game
Creating 2D Game

3 More!
Conclusion
Android
Questions?

Basics Creating Games More!

Level

Multiple 3D objects can be loaded like on the last slide.

They can be composed together to form a typical game world,
with level, creatures, and so on.

Specifically for game levels the engine includes also a special
utilities. We will use it now.

Basics Creating Games More!

Level: 3D Data

Create a 3D model for your level.

From our example data
https://github.com/michaliskambi/
cge-tutorial/archive/master.zip copy the data
from fps_game subdirectory.
Test your level by opening it in view3dscene.
Note that we use X3D Inline mechanism there:
bridge.x3d is exported from Blender,
bridge_final.x3dv is written by hand and inlines
bridge.x3d.

https://github.com/michaliskambi/cge-tutorial/archive/master.zip
https://github.com/michaliskambi/cge-tutorial/archive/master.zip

Basics Creating Games More!

Level: XML Data

Create XML file describing your level.

<?xml version=" 1.0 " ?>
< l e v e l

name=" br idge "
type=" Level "
scene=" b r i d g e _ f i n a l . x3dv "
t i t l e = " Br idge "
p laceho lders=" b lender "

/ >

Basics Creating Games More!

Level: Code

Drop TCastleControl on Lazarus form.

uses Cast leLevels ;

{ handle Cast leCont ro l1 event OnOpen }
procedure TForm1 . CastleControl1Open (

Sender : TObject) ;
begin

Levels . LoadFromFiles ;
Cast leCont ro l1 . SceneManager . LoadLevel (

’ b r idge ’) ;
end ;

Basics Creating Games More!

Items on Level: XML
To create a pickable item that is visible on 3D level, create
resource.xml describing the item.

<?xml version=" 1.0 " ?>
<resource

name=" MedKit "
type=" Item "
capt ion=" Medic K i t "
image=" inventory_image . png ">
<model>

<base u r l = " medkit . x3d " / >
< / model>

< / resource>

Basics Creating Games More!

Items on Level: Code

Let the engine see resource.xml file describing the item
named MedKit.

{ add to the implementation uses clause }
uses . . . , CastleResources ;

{ add at the beginning o f CastleControl1Open }
Resources . LoadFromFiles ;

Basics Creating Games More!

Items on Level: Placeholders

You can now place in Blender special objects named
CasMedKit

On level load, they will be recognized and replaced with
medkit 3D object.
Item can be picked, by default will be just placed in player
inventory.
You can use placeholders for your own stuff as well.
Placeholder detection can be adjusted for given needs or
3D authoring software.

Basics Creating Games More!

Placeholders in Blender

Basics Creating Games More!

Player
There is no player yet (only a default camera, that does not
have inventory or other game features).

{ add to implementation uses clause }
uses . . . , , Cast leP layer ;

{ dec lare i n class p r i v a t e sec t ion }
Player : TPlayer ;

{ add at the beginning o f CastleControl1Open }
Player := TPlayer . Create (

Cast leCont ro l1 . SceneManager) ;
Cast leCont ro l1 . SceneManager . I tems . Add (Player) ;
Cast leCont ro l1 . SceneManager . Player := Player ;

Basics Creating Games More!

HUD I
Items are pickable now, they are added to player’s inventory.
But the inventory is not visualized in any way. Add a simple 2D
HUD:

{ add to implementation uses clause }
uses . . . , , Cas t leUICont ro ls ;

{ add to implementation }
type

TGame2DControls = class (TUIContro l)
public

procedure Render ; ove r r i de ;
end ;

procedure TGame2DControls . Render ;

Basics Creating Games More!

HUD II
var

Player : TPlayer ;
I , J , X : Integer ;

begin
Player := Form1 . Player ;
X := 0 ;
for I :=0 to Player . Inven to ry . Count−1 do

for J :=0 to Player . Inven to ry [I] . Quant i ty−1 do
begin

Player . Inven to ry [I] . Resource . GLImage .
Draw (X, 0) ;

X += 100;
end ;

end ;

Basics Creating Games More!

HUD III

{ add to CastleControl1Open }
var

Game2DControls : TGame2DControls ;
begin

. . .
Game2DControls := TGame2DControls . Create (

A p p l i c a t i o n) ;
Cast leCont ro l1 . Cont ro ls . I n s e r t F r o n t (

Game2DControls) ;
end ;

Basics Creating Games More!

Creatures

Adding a creature with a predefined AI does not require any
code at all.

We already load resources (items and creatures) by
Resources.LoadFromFiles.
This detects knight_creature/resource.xml file
inside as resource named Knight using a standard AI
called WalkAttack.
We already load the level using LoadLevel facility.
This allows to place initial creatures on level by placing
CasResKnight from Blender.

Basics Creating Games More!

Spawn Creatures I
Add a button on a form to spawn creatures. Best to use
TSpeedButton, to not capture focus.

{ add to implementation uses clause }
uses . . . , Cast leVectors , Cast leCreatures ;

{ handle but ton OnClick event }
procedure TForm1 . But ton1Cl ick (Sender : TObject) ;
var

P: TVector3Single ;
D i r e c t i o n : TVector3Single ;
CreatureResource : TCreatureResource ;

begin
P := Player . Pos i t i on + Player . D i r e c t i o n ∗ 10;
D i r e c t i o n := Player . D i r e c t i o n ;

Basics Creating Games More!

Spawn Creatures II

CreatureResource :=
Resources . FindName (’ Knight ’)
as TCreatureResource ;

CreatureResource . CreateCreature (
Cast leCont ro l1 . SceneManager . Items ,
P, D i r e c t i o n) ;

end ;

Basics Creating Games More!

Kill Creatures I
Add a button to kill creature.

{ add to implementation uses clause }
uses . . . , Castle3D ;

{ handle k i l l bu t ton OnClick event }
procedure TForm1 . SpeedButton2Click (

Sender : TObject) ;
var

I : Integer ;
H i t : TRayCol l i s ion ;

begin
H i t := Player . Ray (Player . Middle ,

Player . D i r e c t i o n) ;

Basics Creating Games More!

Kill Creatures II
i f H i t <> n i l then
begin

for I := 0 to H i t . Count − 1 do
i f H i t [I] . I tem i s T3DAlive then
begin

(H i t [I] . I tem as T3DAlive) . Hurt (
100 , Player . D i rec t i on , 1 , Player) ;

Break ;
end ;

FreeAndNil (H i t) ;
end ;

end ;

Basics Creating Games More!

Shadows

Since all our 3D data is in X3D, we can do a lot of fun stuff with
X3D coding. Use Castle Game Engine X3D extensions to get
shadows, screen effects, shader effects, mirrors, and more.

For a simplest demo, enable shadows by „shadows TRUE”
on a light source.
In our sample data from
https://github.com/michaliskambi/
cge-tutorial/archive/master.zip just uncomment
relevant lines at the end of bridge_final.x3dv.

https://github.com/michaliskambi/cge-tutorial/archive/master.zip
https://github.com/michaliskambi/cge-tutorial/archive/master.zip

Basics Creating Games More!

Our Game With Shadows

Basics Creating Games More!

Find X3D Node I
We can trivially access X3D node and change it’s property from
Object Pascal. Notice the DEF Sun in X3D file.

{ add to in ter face uses clause }
uses . . . , X3DNodes ;

{ dec lare i n class p r i v a t e sec t ion }
Root : TX3DRootNode ;
Sun : TSpotLightNode ;

{ add to CastleControl1Open }
Root := Cast leCont ro l1 . SceneManager .

MainScene . RootNode ;
Sun := Root . FindNodeByName (TSpotLightNode ,

’Sun ’ , true) as TSpotLightNode ;

Basics Creating Games More!

Modify X3D Field
We have a reference to our Sun X3D node, we can modify it’s
fields.

{ handle Cast leCont ro l1 event OnUpdate }
procedure TForm1 . Cast leControl1Update (

Sender : TObject) ;
var

V: TVector3Single ;
begin

V := Sun . Locat ion ;
V [2] := Sin (Cast leCont ro l1 . SceneManager .

MainScene . Time . Seconds) ∗ 10;
Sun . Locat ion := V;

end ;

Basics Creating Games More!

Outline
1 Basics

Introduction
Let’s Run Some Stuff
5-minute Programming Crash Course

2 Creating Games
First 3D Application
Creating FPS 3D Game
Creating 2D Game

3 More!
Conclusion
Android
Questions?

Basics Creating Games More!

Data

Example data on https://github.com/michaliskambi/
cge-tutorial/archive/master.zip, copy data from
2d_game subdirectory.

Open with view3dcene background.x3dv and
dragon/dragon.json. Look at background.x3dv with a
text editor, it’s really trivial X3D file.

Dragon was modelled in Spine, and exported to JSON. Our
engine can read it (it’s converted to X3D graph of course).

https://github.com/michaliskambi/cge-tutorial/archive/master.zip
https://github.com/michaliskambi/cge-tutorial/archive/master.zip

Basics Creating Games More!

Spine Peek

Basics Creating Games More!

Code I
Drop TCastle2DControl on a form.

{ add to in ter face uses clause }
uses . . . , C a s t l e F i l e s U t i l s , Castle2DSceneManager ;

{ dec lare as form p r i v a t e f i e l d }
Background : T2DScene ;

{ handle form OnCreate }
procedure TForm1 . FormCreate (Sender : TObject) ;
var

SM: T2DSceneManager ;
begin

Background := T2DScene . Create (A p p l i c a t i o n) ;
Background . Load (

Basics Creating Games More!

Code II

App l i ca t ionData (’ background . x3dv ’)) ;

SM := Cast le2DControl1 . SceneManager ;
SM. Items . Add (Background) ;
SM. MainScene := Background ;
SM. Pro jec t ionAutoS ize := fa lse ;
SM. Pro jec t i onHe igh t := 721;

end ;

Basics Creating Games More!

Dragon
Load a dragon and add it to the world. Start flying animation
immediately.

{ dec lare as form p r i v a t e f i e l d }
Dragon : T2DScene ;

{ add to FormCreate }
Dragon := T2DScene . Create (A p p l i c a t i o n) ;
Dragon . Load (

App l i ca t ionData (’ dragon / dragon . json ’)) ;
Dragon . ProcessEvents := true ;
Dragon . PlayAnimat ion (’ f l y i n g ’ , paForceLooping) ;
Cast le2DControl1 . SceneManager . I tems . Add (Dragon) ;

Basics Creating Games More!

Sidenote: Screen Size

We don’t worry about form size or screen size, because
everything adjusts to the form size automatically.

We had to set the projection size, which says what portion of
game world is visible through the viewport. We don’t worry how
many pixels has the viewport.

Basics Creating Games More!

Scaling The Dragon I
It would be more useful to have some control over dragon
position and scale. We could wrap it in X3D Transform node.
Or use T3DTransform that does something similar, but is
more comfortable in this case.

{ add to in ter face uses clause }
uses . . . , Castle3D , Cast leVectors ;

{ dec lare as p r i v a t e f i e l d i n TForm1 }
DragonTransform : T3DTransform ;

{ add to FormCreate }
DragonTransform :=

T3DTransform . Create (A p p l i c a t i o n) ;
DragonTransform . Scale :=

Basics Creating Games More!

Scaling The Dragon II

Vector3Sing le (0 . 2 , 0 .2 , 0 . 2) ;
Cast le2DControl1 . SceneManager . I tems . Add (

DragonTransform) ;
{ . . . here create Dragon , l i k e prev ious ly ,

but add i t to DragonTransform : }
DragonTransform . Add (Dragon) ;

Basics Creating Games More!

Capturing Mouse I
Let’s capture mouse clicks to know where user wants to move
the dragon.

{ dec lare as p r i v a t e f i e l d i n TForm1 }
F ly ingTarge t : TVector2Single ;

{ i n FormCreate add }
Background . S p a t i a l := [ssRendering ,

ssDynamicCol l is ions] ;
Background . ProcessEvents := true ;

{ handle assign Cast le2DControl1 event OnPress }
procedure TForm1 . Cast le2DControl1Press (

Sender : TObject ;
const Event : TInputPressRelease) ;

Basics Creating Games More!

Capturing Mouse II
begin

i f Event . IsMouseButton (mbLeft) and
(Background .

Point ingDeviceOverI tem <> n i l) then
F ly ingTarge t := Vector2Sing le (

Background . Point ingDeviceOverPoint [0] ,
Background . Point ingDeviceOverPoint [1]) ;

end ;

Note: this was one point where we have to remember that
viewport presents the world, and world coordinates (in
Background.PointingDeviceOverPoint) are not simple mouse
position (in Event.Position).

Basics Creating Games More!

Sidenote: How To Log

We coded the last part blind. Would be nice to see what is
going on, whether FlyingTarget gets any sensible values.

Show message in Lazarus:

ShowMessage (’my str ing ’) ;
ShowMessage (’my vec to r i s ’ +

VectorToNiceStr (MyVector)) ;
ShowMessage (Format (’my i n t %d , my f l o a t %f ’ ,

[MyInt , MyFloat])) ;

Basics Creating Games More!

Moving The Dragon Immediately
Using DragonTransform we can easily move the whole
dragon 3D object.

procedure TForm1 . Castle2DControl1Update (
Sender : TObject) ;

var
T : TVector3Single ;

begin
T := DragonTransform . T rans la t i on ;
T [0] := F ly ingTarge t [0] ;
T [1] := F ly ingTarge t [1] ;
DragonTransform . T rans la t i on := T ;

end ;

Basics Creating Games More!

Moving The Dragon With Speed I
Many ways to do it.

function MoveTo(const Star t , Target : S ing le) :
S ing le ;

var
MoveDist : S ing le ;

begin
MoveDist := 500 ∗

Cast le2DControl1 . Fps . UpdateSecondsPassed ;
i f S t a r t < Target then

Resul t := Min (Target , S t a r t + MoveDist) else
Resul t := Max(Target , S t a r t − MoveDist) ;

end ;

Basics Creating Games More!

Moving The Dragon With Speed II

var
T : TVector3Single ;

begin
T := DragonTransform . T rans la t i on ;
T [0] := MoveTo(T [0] , F l y ingTarge t [0]) ;
T [1] := MoveTo(T [1] , F l y ingTarge t [1]) ;
DragonTransform . T rans la t i on := T ;
{ see example code f o r a d d i t i o n a l

t r i c k to h o r i z o n t a l l y m i r r o r dragon }
end ;

Basics Creating Games More!

Outline
1 Basics

Introduction
Let’s Run Some Stuff
5-minute Programming Crash Course

2 Creating Games
First 3D Application
Creating FPS 3D Game
Creating 2D Game

3 More!
Conclusion
Android
Questions?

Basics Creating Games More!

Outline
1 Basics

Introduction
Let’s Run Some Stuff
5-minute Programming Crash Course

2 Creating Games
First 3D Application
Creating FPS 3D Game
Creating 2D Game

3 More!
Conclusion
Android
Questions?

Basics Creating Games More!

What We Know Now

This was just a start of a 3D, and then a short start of a 2D
game, but I’m sure you get the idea how to continue.
You have all the necessary tools now.

You can manage levels, player, items, inventory, creatures
on a 3D world.
You can directly create and destroy and move whole 2D
and 3D objects (TCastleScene, T2DScene).
You can modify the scene’s X3D graph.

Basics Creating Games More!

Outline
1 Basics

Introduction
Let’s Run Some Stuff
5-minute Programming Crash Course

2 Creating Games
First 3D Application
Creating FPS 3D Game
Creating 2D Game

3 More!
Conclusion
Android
Questions?

Basics Creating Games More!

Our Game On Android

Basics Creating Games More!

Android

Need to use TCastleWindow engine component, not
TCastleControl. Like TCastleControl but engine
fills 100
The engine supports custom 3D viewports and 2D
controls. So your game area is still fully configurable. You
just have to draw 100
It is easy to create game code that compiles and works on
both desktop (Windows, Linux, Mac OS X...) and Android.
See example code of 2d_game_android_and_desktop.

Basics Creating Games More!

Build tool

The engine includes a build tool, that compiles a
production-ready Android apk (something you can install or
upload to Google Play). You only provide a Pascal source code,
and CastleEngineManifest.xml declaring basic application
parameters.

See example CastleEngineManifest.xml.

Basics Creating Games More!

Integration with Android Libraries
The engine code can easily interact with Java on Android.
Some Android APIs with which we already successfully
integrated:

Google Play Game Services,
In-app payments,
Ads,
Google Analytics,
Game Analytics.

For some cool games done using Castle Game Engine,
published on Google Play, visit
https://play.google.com/store/apps/developer?
id=Michalis+Kamburelis

https://play.google.com/store/apps/developer?id=Michalis+Kamburelis
https://play.google.com/store/apps/developer?id=Michalis+Kamburelis

Basics Creating Games More!

Outline
1 Basics

Introduction
Let’s Run Some Stuff
5-minute Programming Crash Course

2 Creating Games
First 3D Application
Creating FPS 3D Game
Creating 2D Game

3 More!
Conclusion
Android
Questions?

Basics Creating Games More!

Visit us:
http://castle-engine.sourceforge.net/

Thank you for your attention!

Questions?

	Basics
	Introduction
	Let's Run Some Stuff
	5-minute Programming Crash Course

	Creating Games
	First 3D Application
	Creating FPS 3D Game
	Creating 2D Game

	More!
	Conclusion
	Android
	Questions?

